UG Programs in Engineering (R20UG) Curriculum and Syllabus for

VII - VIII Sem B.Tech

Department of Computer Science and Engineering

KandulaSrinivasa Reddy Memorial College of Engineering (Autonomous) Kadapa 516003 AP (Approved by AICTE, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC) (An ISO 9001-2008 Certified Institution)

COMPUTER SCIENCE AND ENGINEERING

Approved Course Structure

VII Semester (Theory-06)

S. No	Subject Code	SUBJECT	SC	L	Т	Р	IM	ЕМ	CR
		Professional Elective Course-III (PEC-III)							
1	2005701	Compiler Design	PEC	3	0	0	40	60	3
	2005702	Computer Graphics	PEC	3	0	0	40	60	3
	2005703	Cyber Security	PEC	3	0	0	40	60	3
		Professional Elective Course-IV (PEC-IV)							
2	2005704	Machine Learning	PEC	3	0	0	40	60	3
	2005705	Object Oriented Analysis & Design	PEC	3	0	0	40	60	3
	2005706	Natural Language Processing	PEC	3	0	0	40	60	3
		Professional Elective Course-V (PEC-V)							
3	2005707	Cloud Computing	PEC	3	0	0	40	60	3
	2005708	Deep Learning	PEC	3	0	0	40	60	3
	2005709	Computer Vision	PEC	3	0	0	40	60	3
		Open Elective Course-III(OEC-III)							
4	200E505	Open Elective Course-III	OEC	3	0	0	40	60	3
	200E506	Open Elective Course-III	OEC	3	0	0	40	60	3
		Open Elective Course-IV(OEC-IV)							
5	200E507	Open Elective Course-IV	OEC	3	0	0	40	60	3
	200E508	Open Elective Course-IV	OEC	3	0	0	40	60	3
		Humanities & Social Science Elective							
6	2006701	Human Resource Development	HSMC	3	0	0	40	60	3
	2006702	Digital Marketing	HSMC	3	0	0	40	60	3
	2006703	Project Management	HSMC	3	0	0	40	60	3
7	2005710	Skill Oriented Course Big Data Technologies	SC	0	0	4	40	60	2
8	2005711	Internship	INT	0	0	0	100	0	3
		Total	18	00	4	380	420	23	

VIII Semester

S.No.	Subject Code	SUBJECT	SC	L	Т	Р	IM	EM	CR
1	2005801	Major Project/ Internship (6Months)	PROJ	0	0	3	40	60	12
								12	

Structure of the Undergraduate Engineering Program:

S.No.	Category	Code	Credits	APSCHE Suggested Credits
1	Humanities &Social Sciences including Management Sciences	HSMC	10.5	10
2	Basic Science Courses	BSC	18	21
3	Engineering Science Courses	ESC	24	24
4	Professional Core Courses	PCC	54	51
5	Open Elective Courses	OEC	12	12
6	Professional Elective Courses	PEC	15	15
7	Internship & Project Work	Proj	16.5	17
8	Mandatory Courses	MC	03	Non-Credit
9	Skill Oriented Courses	SC	10	10
	Total Credits		163	160

B.Tech VII SEM CSE (R20)

Course T	itle C	OMPII	LER D	ESIGN	B.Tech VI	I Sem(R20)	CSE				
	(Profess	sional E	Elective	e Cours	se-III)						
Course C	ode Category	Ho	urs/W	eek	Credits	Maxii	Maximum Marks				
200570	PCC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
		3	0	0	3	40	60	100			
	Mid Exam Durati	on:2Ho	ours		End Exa	m Duration	:3Hrs				
Course Ob To Cru Un Syn Course Ou	jectives: make the student t eating awareness an derstand the syntax nbol table.	o under nong st analys	stand thudents is, inte	he proce on vari rmediat	ess involved ous types of the code gene	d in compilation. f parsers. eration, type check	king, and the	role of			
	Inderstand and ana	lyze the	vario	un u	as of Compi	iler	De able to				
CO1 = 0	dentify the tokens	ising lo	vical	nglyzer	techniques						
CO_2 1	Cotogonize and imm	lomont.		taahni	teeninques.						
CO3 U CO4 U s	Jnderstand syntax synthesized and inh	direct direct	ed de ttribute	finition s.	and deve	elop type check	ting semant	ics using			
CO5 U	Understand the storage allocation and intermediate code representations.										
CO6 5	Summarize the code optimize techniques and demonstrate code generation technique and concepts.										

<u>UNIT-I</u>

Introduction to Compiling :Compilers, Analysis of the Source program, the phases of a compiler, the cousins of the Compiler, grouping of phases, Compiler construction tools.

Lexical Analysis: The role of the analyzer. Input buffering, Specification of tokens, Recognition of tokens, A language for Specifying Lexical analyzer.

<u>UNIT-II</u>

Syntax Analysis: The role of the parser, Context-free grammars writing a grammar, Top down parsing, Bottom-up parsing, Operator-precedence parsing, LR parsers, Parser generators.

UNIT-III

Syntax Directed Translation: Syntax-directed definitions, Construction of syntax trees, S-attributed definitions, L-attributed definitions.

Type Checking: Type systems, Specification of simple type checker, Equivalence of type expressions, type conversions.

UNIT-IV

Run-Time Environments: Source Language issues, storage organization, Storage-allocation strategies, Access to non local names, Symbol tables.

Intermediate Code generation: Intermediate languages, three address code, quadruple, triple and indirect triple.

UNIT-V

Code Generation: Issues in the Design of a code generator, The target machine, Basic blocks and flow graphs, Next-use information, A simple code generator, Register allocation and assignment, DAG representation of basic blocks, peephole optimization.

Code Optimization: Introduction, the principle source of optimization.

TextBook:

- 1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, "Compilers-Principles, Techniques and Tools", Pearson Education.
- 2. Alfred V.Aho, Jeffrey D.Ullman, "Principles of Compiler Design", Narosa Publications.
- 3. M. Sreenivasulu, "Compiler Design", Research India Publications.
- 4. K.V.N.Sunitha, "Compiler Construction", Pearson Education.

<u>ReferenceBooks</u>:

- 1. Muneeswaran, "CompilerDesign", Oxforward university press
- 2. Nandini Prasad K S, "Principles of Compiler Design", Cengage Publication.
- 3. Santanu Chattopadhyay "Compiler Design", PHI.
- 4. M. Ganga Durga, T.G. Mani Kumar, "Principles of Compiler Design", MJP Publishers.

Course	e Title	CO (Pro	COMPUTER GRAPHICS (Professional Elective Course-III)					B.Tech VII Sem (R20) CSE				
Course	e Code	Category	Ног	ırs/Wee	k	Credits	Maximum Marks					
2005702		PEC	L T P		С	Continuous Internal Assessment	End Exams	Total				
			3	0	0	3	40	60	100			
	Mid E	xam Duration	: 90 Mii	En	d Exam Durat	ion: 3Hrs						
Course Course CO 1	Objectiv To apply To devel To Deve Outcome Classify Devices	the rules and a lop multi-dimer lop real-time re es: On succession CRT, Color Cl	lgorithn sional o ndering ful comj RT, DVS	ns in gen bjects u graphic oletion (ST, Flat	erating sing su s. of this Panel o	g graphical itable trans course, the display dev	outputs. sformations. e students will vices and Graph	be able to ical Input	,			
CO 2	Understand DDA, Bresenhams line drawing algorithms and Midpoint circle generating algorithms, clipping of polygons.											
CO 3	Exempl	ify 2D & 3Dtra	nslation	, rotatio	n, refle	ection, scali	ing and shearing	g.				
CO 4	Compar	e RGB, CMY,	YIQ, CM	IYK Co	lor mo	dels.						
CO 5	Summar	Summarize types of animation, Animation sequence and morphing technique.										

<u>UNIT - I</u>

Introduction: Usage of Graphics and their applications, Presentation Graphics- Computer Aided Design- Computer Art- Entertainment- Education and Training- Visualization- Image Processing Graphical User Interfaces.

Overview of Graphics systems: Video Display Devices- Raster Scan systems-random scan

systems Graphics monitors and workstations-Input devices-hard copy devices- Graphics software.

<u>UNIT - II</u>

Scan Converting Lines – Basic Incremental algorithm, Midpoint algorithm and additional issues; Scan converting Circles, Scan Converting Ellipses, Solid Filling, Pattern Filling, Thick Primitives, Cohen – Sutherland line clipping algorithm, Parametric line clipping algorithms, Sutherland – Hodgeman polygon clipping algorithm, Generating characters.

<u>UNIT - III</u>

Geometrical transformations – 2D transformations, Homogeneous coordinates, Matrix representation of 2D transformations, Composition of 2D transformations, Window to view- port transformation, Matrix representation of 3D transformations, Composition of 3D transformations.

Representing Curves and Surfaces – Polygon meshes, Parametric cubic curves, Parametric bicubicsurfaces and Quadratic surfaces.

<u>UNIT - IV</u>

Viewing in 3D – Projections, Specifying an arbitrary 3D view.

Solid Modeling – Representing Solids, Regularized Boolean set operations, Primitive instancing, Sweep Representation, Boundary Representations, Spatial-Partitioning Representations.

Achromatic and Colored Light – Achromatic light, Chromatic color, Color models for raster graphics, Reproducing color, Using color in computer graphics.

<u>UNIT - V</u>

Illumination Models – Ambient light, Diffuse reflection, Atmospheric attenuation. **Shading Models** – Constant shading, Interpolated shading, Polygon mesh shading, Gouraudshading, Phong shading.

Animation – Conventional and Computer–Assisted animation, Animation languages, Methods of controlling animation, Basic rules of animation, Problems peculiar to animation.

Text Books:

- Foley, Van Dam, Feiner and Hughes, Computer Graphics Principles and Practice, 2ndEdition in C, Pearson Education, 2004
- 2. Donald Hearn and M. Pauline Baker, Computer graphics, C version, Prentice Hall.
- 3. William M. Newman, Robert F. Sproull, Principles of interactive computer graphics, 12thEdition, McGraw Hill, 1986.
- 4. David F. Rogers, Rae A. Earnshaw, Computer Graphics Techniques : Theory and Practice, Springer-Verlag, 1990.

<u>Reference Books</u>:

- 1. Computer Graphics using Open GL by Franscis S Hill Jr Pearson Education, 2004.
- Fundamentals of Computer Graphics, Steve Marschner, Peter Shirley, 4th Edition, CRC Press.
- Introduction to Computer Graphics: A Practical Learning Approach, Fabio Ganovelli, Massimiliano Corsini, Sumanta Pattanaik, Marco Di Benedetto, CRC Press.
- 4. Computer Gaphics, Amarendra N. Sinha, Arun D Uadi, Tata McGraw Hill.

Cours	se Title	CYE	BER SI	ECUR	ITY	B.Tech VII Sem (R20) CSE					
		(Profession	nal Eleo	ctive C	ourse-	III)					
Cours	se Code	Category	H	ours/V	Veek	Credits	Maximum Marks				
2005703		PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0	0	3	40	60	100		
	Mid Ex	am Duration:	90 Mi	nutes			End Exam Dur	ration: 3H	Irs		
Course	Course Objectives:										
•	To learn a	about cybercrin	nes and	how t	hey are	planned					
•	To learn t	he vulnerabilit	ies of n	nobile	and wir	eless device	es				
•	The learn protect pe	er will gain kr rsonal data, and	owledg d secur	ge abo e comp	ut secu outer ne	ring both cl tworks.	lean and corrupte	ed system	s,		
Course	Outcom	es: On success	ful con	npletic	on of th	is course, tl	he students will	be able to			
CO 1	Understa	nding the basic	cyber	securit	y conce	epts.					
CO 2	Classifyi	ng the internati	onal la	ws and	cyber f	forensics.					
CO 3	O 3 Remembering to cyber-crime.										
CO 4	O 4 Recognizing cybercrime and cyber terrorism.										
CO 5) 5 Understanding the privacy issues.										

<u>UNIT - I</u>

Introduction to Cyber Security: Basic Cyber Security Concepts, layers of security, Vulnerability, threat, Harmful acts, Internet Governance – Challenges and Constraints, Computer Criminals, CIA Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, hardware attacks, Spectrum of attacks, Taxonomy of various attacks, IP spoofing, Methods of defense, Security Models, risk management, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, etc., Comprehensive Cyber Security Policy.

<u>UNIT - II</u>

Cyberspace and the Law & Cyber Forensics: Introduction, Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy. Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics, Special Techniques for Forensics Auditing.

<u>UNIT - III</u>

Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

UNIT-IV

Cyber Security: Organizational Implications: Introduction, cost of cybercrimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges for organizations.

Cybercrime and Cyber terrorism: Introduction, intellectual property in the cyberspace, the ethical dimension of cybercrimes the psychology, mindset and skills of hackers and other cyber criminals.

<u>UNIT - V</u>

Privacy Issues: Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, Data linking and profiling, privacy policies and their specifications, privacy policy languages, privacy in different domains- medical, financial, etc.

Text Books:

- Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, ComputerForensics and Legal Perspectives, Wiley
- B. B. Gupta, D. P. Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335, 2018.
- Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.
- 4. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J. David Irwin, CRC Press.

<u>Reference Books</u>:

1. Cyber Security Engineering: A Practical Approach for Systems and Software Assurance, Nancy R. Meade, Carol C. Woody, Addison Wesley.

2. The Cyber Security: Self help Guide, Arun Soni, CRC Press.

3. Cyber Security: Analytics, Technology & Automation, Martti Lehto, Pekka Neittaanmaki, Springer.

4. Cyber Security: Essentials, Charles J. Brooks, Christopher Grow, Philip Craig, Donald Short, SYBEX.

Course '	MA(Profess)	CHINE ional El	LEAR	NING Course	-IV)	B.Tech CSE	VII Sen	n (R20)		
Course	Code Category	Ho	urs/We	ek	Credits	Maximum Marks				
20057	04 PEC	PEC		Р	С	Continuous Internal Assessment	End Exams	Total		
		3	0	0	3	40	60	100		
Mid Exa	m Duration: 2 Hour	Ś				End Exam	Duration	: 3Hrs		
Course ()bjectives:									
• T	To introduce students to the basic concepts and techniques of Machine Learning.									
• T	have a thorough un	derstandi	ng of th	e Supei	vised and	Unsupervised l	earning			
te	chniques.									
• T	o study the various pr	obability	-based a	and gen	eralized le	arning techniqu	ies.			
• T	o understand ensemb	e model	s of mac	hine lea	arning algo	orithms.				
Course (Outcomes: On succes	sful com	pletion of	of this o	course, the	students will b	e able to			
CO 1	Understand the mach applications	ine learr	ing con	cepts th	at are suita	able for develop	oing real t	ime		
CO 2	Understand the conce	ept of de	cision tro	ee class	ifier and d	evelop a model	for a give	en		
	problem.									
CO 3	Apply instant based learning to solve a real time problem.									
CO 4	Understand the conce	epts of pr	obabilit	y and E	Bayes's ma	chine learning	algorithm	S.		
CO 5	Evaluate different clu	istering a	algorithr	ns.						

UNIT-I:

Introduction: Introduction to Machine Learning: Introduction, Different types of learning, Applications of Machine Learning, Parametric and Nonparametric Machine Learning Algorithms, Training and test sets, cross validation.

Linear Regression: Simple linear regression, steps in building a regression model, Building simple linear regression model, multiple linear regression, building multiple linear regression model.

UNIT-II:

DecisionTreeLearning:Introduction,Decisiontreerepresentation,appropriateproblems for decision tree learning, the basic decision tree algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning, Avoiding Over fitting the Data.

UNIT-III:

Instance Based Learning: K nearest neighbor, the Curse of Dimensionality, Over fitting and Under fitting, Feature Selection: forward search, backward search, univariate, multivariate feature selection approach, Dimensionality Reduction, Linear Discriminant Analysis, Principal Component Analysis.

UNIT-IV:

Probability and Bayes Learning: Brute-Force Bayes Concept Learning, Maximum Likelihood Hypothesis, Naïve Bayes Classifier, Logistic Regression, Support Vector Machine: Introduction, the Dual formulation, Maximum margin with noise, nonlinear SVM and Kernel function, Beyond Binary Classification.

UNIT-V:

Evaluating Machine Learning algorithms and Model Selection, Ensemble Learning: Introduction, Bagging and boosting, Random forest. Clustering: Introduction, K-mean clustering, K-medoids clustering, Hierarchical clustering -Agglomerative clustering – Divisive clustering- Choosing the number of clusters.

Text Books:

- 1. Tom M.Mitchell, "Machine Learning", Tom M.Mitchell, McGraw-Hill
- 2. Manaranjan Pradhan, U Dinesh Kumar, "Machine Learning using python", Wiley Publications
- 3. KevinMurphy, "Machine Learning: A Probabilistic Perspective", MITPress, 2012
- 4. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2007

- 1. Andrews C Muller, Sarah Guido, "Introduction to Machine Learning with Python", OReilly Publications,
- 2. Stephen Marshland, "Machine Learning: An Algorithmic Perspective", Taylor & Francis
- 3. Peter Flash, Cambridge, "Machine Learning: The Art and Science of Algorithms That Make Sense of Data", University Press
- 4. Trevor Hastie, Robert Tibshi rani, Jerome Friedman, "The Elements of Statistical Learning", Springer, 2009.

Cour	rse Title	OBJECT	ORIE D	NTED ESIGN	B.Tech VII	Sem (R2	0) CSE					
~	~ -	(Profess	sional I	Electiv	e Cou	rse-IV)						
Cour	se Code	Category	Hours/Week Cred			Creatis	Maxim	um Mark	s			
2005705		PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3	0	0	3	40	60	100			
	Mid Ex	am Duration:	90 Mii	En	d Exam Durati	ion: 3Hrs						
Course	rse Objectives:											
•	To unde	rstand the Obje	ct-orie	nted lif	e cycle	2.						
•	To know	how to identif	y objec	ets, rela	tionsh	ips, Services a	and attributes th	rough UN	1L.			
•	To unde	rstand different	UML	diagra	ms.							
•	To know	object-oriente	d desig	n proc	ess, so	ftware quality	and usability.					
Course	e Outcom	es: On success	ful con	npletic	on of th	nis course, th	e students will	be able to				
CO 1	Design s	oftware applica	ations a	and doc	ument	them using U	JML class diagr	ams				
CO 2	Analyze	, design, docun	nent the	e requi	rement	s through use	case driven app	roach.				
CO 3	Identify	analyses, and n	nodel s	tructur	al and	behavioral co	ncepts of the sy	stem.				
CO 4	4 Apply the concepts of architectural design for deploying the code for software.											
CO 5	Develop	: explore the co	ncentu	al mod	lel into	various scena	arios and applic	ations				

<u>UNIT - I</u>

Introduction to UML: Importance of Modeling, Principles of Modeling, Object Oriented Modeling, Conceptual Model of the UML, Architecture.

<u>UNIT - II</u>

Basic Structural Modeling : Classes, Relationships, Common Mechanisms, andDiagrams Interfaces, Types and Roles, Packages.

Class and Object Diagrams : Terms, Concepts, Modeling Techniques for Class andObject Diagrams.

<u>UNIT - III</u>

Basic Behavioral Modeling-I: Interactions, Interaction Diagrams.

Basic Behavioral Modeling-II: Use Cases, Use Case Diagrams, Activity Diagrams.

<u>UNIT - IV</u>

Advanced Behavioral Modeling : Events and Signals, State Machines, Processes and Threads, Time and Space, State Chart Diagrams.

<u>UNIT - V</u>

Architectural Modeling: Component, Deployment, Component Diagrams and DeploymentDiagrams, Systems and Models.

Case Stud : The Unified Library Application.

Text Books:

- 1. The Unified Modeling Language User Guide, Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Education.
- 2. UML 2 Toolkit, Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado, WILEY-Dreamtech India Pvt. Ltd.
- 3. Fundamentals of Object Oriented Design in UML, Meilir Page- Jones, Pearson Education.
- Modeling Software Systems Using UML2, Pascal Roques, Wiley- Dreamtech India Pvt.Ltd.

<u>Reference Books</u>:

- 1. Object Oriented Analysis and Design, Atul Kahate, The McGraw-Hill Companies.
- Object-Oriented Analysis and Design with the Unified Process, John W. Satzinger, Robert B Jackson and Stephen D Burd, Cengage Learning.
- 3. Learning UML 2.0, Russ Miles and Kim Hamilton, O'Reilly, SPD.
- 4. Appling UML and Patterns: An introduction to Object Oriented Analysis andDesign and Unified Process, Craig Larman, Pearson Education.
- 5. UML and C++, R.C.Lee and W.M.Tepfenhart, PHI.
- 6. Object Oriented Analysis, Design and Implementation, B.Dathan and S.Ramnath, Universities Press.
- 7. OO Design with UML and Java, K.Barclay, J.Savage, Elsevier.
- 8. Mark Priestley: Practical Object-Oriented Design with UML, TMH.

Course Titl	e NAT	URAL PROC	LAN ESSII	GUA NG	GE	B. Tech. VII Sem CSE (R20)				
	(Profes	sional E	lective	e Cou	rse-IV)					
Course Cod	e Category	Hou	rs/We	ek	Credits	Maximum Marks				
2005706	PEC	L	Т	Р	С	ContinuousEndInternalExamsAssessmentExams		Total		
		3	0	0	3	40	60	100		
Mi	l Exam Duratio	on: 90 M	lin		E	and Exam Durat	ion: 3Hrs			
Course Obj	ectives:									
• Unde	rstand approach	es to syn	itax an	d sem	antics in NL	P.				
• Unde	rstand current m	nethods f	or stati	istical	approaches	to machine trans	lation.			
Unde	rstand language	modelin	ıg.							
• Unde	rstand machine	learning	techni	ques u	used in NLP.					
Course Out	comes: On succ	essful co	omplet	ion of	f this course	e, the students w	ill be able t	to		
CO1 Un	derstand the fun	damenta	ls requ	ired fo	or Computat	ional Linguistics				
CO 2 Un	2 Understand the concepts of Language design, Text Transformer and their Products									
CO3 Ha	Have the clear idea of language specifications using context and free grammars									
CO 4 Un	Understand machine learning techniques used in NLP									

<u>UNIT I</u>

Introduction to Natural Language Understanding, Syntactic Processing: Grammars and Parsing.

<u>UNIT II</u>

Features and Augmented Grammars, Toward Efficient Parsing, Ambiguity Resolution.

UNIT III

Statistical Methods: Probabilistic Context-Free Grammars, Best-First Parsing.

UNIT IV

Semantic Interpretation: Linking Syntax and Semantics, Ambiguity Resolution, other Strategies for Semantic Interpretation.

UNIT V

Context and World Knowledge: Using World Knowledge, Discourse Structure, Defining a Conversational Agent.

Text Book:

1. Natural Language Understanding – James Allen, Second Edition, Pearson Education.

2. Speech and Language Processing – Daniel Jurafsky, James H.Martin.

3. Foundations of Statistical Natural Language Processing – Christopher Manning, Hinrich Schutze, MIT Press.

4. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.

Reference Books:

1. Jurafsky, Dan and Martin, James, Speech and Language Processing, 2nd Edition, Prentice Hall, 2013-2014

2. Manning, Christopher and Henrich, Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999.

3. Introduction to Natural Language Processing, Jacob Eisenstein, MIT Press.

4. Natural Language Processing In Action, Hobson Lane, Cole Howard & Hannes Max Hapke, Manning Publications.

Course	e Title	CL (Professio	OUD CO mal Ele	OMPUT ctive Co	TING ourse -	B.Tech VII Sem (R20) CSE				
Course	e Code	Category	Ног	ırs/Wee	k	Credits	Maximum Marks			
2005	5707	PEC	L	L T P		С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
	Mid E	Exam Duration	En	d Exam Durat	ion: 3Hrs	5				
• • •	To explain the history of different computing paradigms. To Know about issues and virtualization in cloud. To introduce the various levels of Cloud Services and applications that can be achieved by the cloud. To know about cloud access and security issues.									
Course	Outcom	es: On success	ful com	pletion o	of this	course, the	e students will	be able to)	
CO 1	Recall d	lifferent Compu	iting Pai	adigms	and ov	erview of o	cloud computin	g.		
CO 2	Underst migratio	anding the Clon strategy.	loud Co	omputing	g Arc	hitecture,	network conne	ectivity a	nd cloud	
CO 3	Explain and characterize different cloud deployment models, service models and virtualization.									
CO 4	4 Understanding Programming models and Software Development in Cloud Computing.									
CO 5	Understanding Cloud Service Providers Google Web Services, AWS and Microsoft cloud Services.									

<u>UNIT-I</u>

Computing Paradigms:

High-Performance Computing, Parallel Computing, Distributed Computing, Cluster Computing, Grid Computing, Cloud Computing, Biocomputing, Mobile Computing, Quantum Computing, Optical Computing, Nano computing, Network Computing.

Cloud Computing Fundamentals:

Motivation for Cloud Computing: The Need for Cloud Computing. Defining Cloud Computing: NIST Definition of Cloud Computing, Computing Is a Service, Cloud Computing Is a Platform. Principles of Cloud computing: Five Essential Characteristics, Four Cloud Deployment Models, Three Service Offering Models, Cloud Ecosystem, Requirements for Cloud Services, Cloud Application, Benefits and Drawbacks.

<u>UNIT-II</u>

Cloud Computing Architecture and Management: Cloud Architecture, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications on the Cloud, Managing the Cloud, Migrating Application to Cloud.

<u>UNIT-III</u>

Cloud Deployment Models: Private Cloud, Public Cloud, Community Cloud, Hybrid Cloud **Cloud Service Models:** Infrastructure as a Service, Platform as a Service, Software as a Service, Other Cloud Service Models. **Virtualization:** Introduction, Virtualization opportunities, Approaches to Virtualization, Hypervisors, From Virtualization to cloud computing.

UNIT-IV

Programming Models in Cloud: Cloud Application Development Platforms: Windows Azure, Google App Engine, Force.com, Manjrasoft Aneka

Software Development in Cloud: Introduction, Different perspectives on SaaS development, New challenges, Cloud aware software development using PaaS technology.

UNIT-V

Cloud Services : Using Google Web Services – Exploring Google toolkit, Google APIs, Using Amazon Web Services – Understanding AWS, AWS Components and Services, Working with the Elastic Compute Cloud (EC2), Amazon Storage Systems, Amazon Database Services, Using Microsoft Cloud Services – Exploring Microsoft Cloud Services, Defining the Windows Azure Platform.

Text Books:

- 1. Barrie Sosinsky, "Cloud Computing Bile", Wiley publishing.
- 2. Judith Hurwitz, R Bloor, M.Kanfman, F.Halper "Cloud Computing for Dummies", Wiley India Edition, First Edition.
- 3. Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, "Cloud Computing: Principles and Paradigms", Wiley Publication, 2011.
- 4. K.Chandrasekaran, Essentials of Cloud Computing, CRC Press, 2015.

- 1. Danielle Ruest and Nelson Ruest, "Virtualization: A Beginners's Guide", McGraw Hill,2009.
- 2. Tom White, "Hadoop: The Definitive Guide", O'RIELLY Media 2009.
- 3. Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012.

Cours	e Title		DEE	P LEA	Ĵ	B.Tech VII	Sem (R20)) CSE		
		(Prof	ession	al Ele	ctive Co	urse -V)				
Course	e Code	Category	Hours/Week			Credits	Maximum Marks			
2005708		РЕС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
	Mid Ex	End Exam Dui	ration: 3H	Irs						
Course	Objectiv	ves:								
•	Study th	e neural networ	ks and	d conv	olutions	networks and	their architect	ure.		
•	Gain kn	owledge about	recurr	ent nei	ural netv	vorks and dee	ep supervised le	earning mo	ethods.	
Course	Outcom	es: On success	ful co	mpleti	on of th	is course, th	e students will	be able to)	
CO 1	Understa	and the neural n	etwor	ks to so	olve the	real time pro	blems.			
CO 2	Understa	and convolution	al neu	ral net	works a	nd their archi	tectures.			
CO 3	Understand recurrent neural networks and recursive NNs.									
CO 4	Understand Deep supervised learning methods.									
CO 5	Impleme	ent the Deep Lea	arning	mode	ls in vari	ous Applicat	ions.			

<u>UNIT - I</u>

Introduction: Feed forward Neural networks, Gradient descent and the back propagation algorithm, Unit saturation, vanishing gradient problem, ways to mitigate it. RelU Heuristics for avoiding bad local minima, Heuristics for faster training, Nestors accelerated gradient descent, Regularization, Dropout.

<u>UNIT - II</u>

Convolutional Neural Networks : Architectures, convolution / pooling layers

<u>UNIT - III</u>

Recurrent Neural Networks: LSTM, GRU, Encoder Decoder architectures Recursive neural network (RNN).

<u>UNIT - IV</u>

Deep Unsupervised Learning: Auto encoders (standard, sparse, denoising, contractive, etc), Variational Auto encoders, Adversarial Generative Networks, Autoencoder and DBM Attention and memory models, Dynamic memory networks.

<u>UNIT - V</u>

Applications of Deep Learning to NLP/Computer Vision: Introduction to NLP and Vector Space Model of Semantics, Word Vector representations: Continuous Skip-Gram Model, Continuous Bag-of-Words model (CBOW), Named Entity Recognition, Opinion Mining using Recurrent Neural Networks, Sentence Classification using Convolutional Neural Networks. Image segmentation, object detection, automatic image captioning, Image generation with Generative adversarial networks, Video to text with LSTM models. Attention models for computer vision tasks.

Text Books:

- 1. Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning." An MIT Press book. (2015).
- 2. Josh Patterson, Adam Gibson, Deep Learning: A Practitioner's Approach, OReilly, 2017.
- 3. Jeff Heaton, Deep Learning and Neural Networks, Heaton Research Inc, 2015.
- 4. Mindy L Hall, Deep Learning, VDM Verlag, 2011.

<u>Reference Books</u>:

- 1. Introduction to Deep Learning, Eugene Charniak, The MIT Press.
- 2. Deep Learning, D. Kelleher, The MIT Press.
- 3. Dive into Deep Learning, Joanne Quinn, Joanne McEachen, Michael Fullan, Mag Gardner, Max Drummy, Corwin.

Course Title		COM	PUTE	R VISIO	DN	B.Tech VII)) CSE		
	(Prof	ession	al Ele	ctive Co	urse -V)				
Course Code	Category	Hours/Week			Credits	Maximum Marks			
2005709	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
Mid E	xam Duration:	90 M	inutes			End Exam Dur	ration: 3H	Irs	
Course Objecti	ves:								
• To in	troduce the fund	lamen	tals of	image fo	ormation.				
• To in recog	troduce the maj	or ide	eas, me	ethods, a	nd technique	es of computer	vision and	l pattern	
• To develop an appreciation for various issues in the design of computer vision and object recognition systems.									
Course Outcon	nes: On success	ful co	mpleti	ion of th	is course, th	e students will	be able to)	
CO 1 Identify basic concepts, terminology, theories, models and methods in the field of computervision.									

CO 2 Describe known principles of human visual system.

CO 3 Describe basic methods of computer vision related to multi-scale representation, edge detection and detection of other primitives, stereo, motion and object recognition.

UNIT-I

Image Formation Models:Monocular imaging system, Orthographic& Perspective Projection, Camera model and Camera calibration, Binocular imaging systems.

UNIT-II

Image Processing and Feature Extraction:Image representations (continuous and discrete), Edgedetection.

<u>UNIT-III</u>

Motion Estimation: Regularization theory, Opticalcomputation, StereoVision, Motionestimation, Structure from motion.

UNIT-IV

Shape Representation and Segmentation:Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and wavelet descriptors, Medialrepresentations, Multiresolution analysis.

UNIT-V

Object recognition:Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal Component analysis, Shape priors for recognition.

Text Books:

- 1. Computer Vision A modern approach, by D. Forsyth and J. Ponce, Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.
- 2. Richard Szeliksy "Computer Vision: Algorithms and Applications" (http://szeliski.org/Book/).
- 3. Haralick& Shapiro, "Computer and Robot Vision", Vol II.

Reference Books:

1. G_erardMedioni and Sing Bing Kang "Emerging topics in computer vision".

2. Emanuele Trucco and AllessandroVerri "Introductory Techniques for 3-D Computer Vision", Prentice Hall, 1998.

3. Olivier Faugeras, "Three-Dimensional Computer Vision", The MIT Press, 1993.

Course Title	HUMAN RE (Humanit	SOUF ies & { (RCE D Social Course	EVELC Science	PMENT Elective	B.Tech VII Sem (R20) CSE			
Course Code	Category	H	lours/	Week	Credits	Maximum Marks			
2006701	HSMC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
Mid Fy	vom Duration		End Exam Dur	otion · 3E	Inc				

Course Objectives:

- To develop capability of all individuals working in an organization in relation to their present role
- To develop team spirit.
- To develop co-ordination among different units of an organization.
- To develop organization health by continuous reveal of individual capability keeping peace with the technological changes.
- To develop better interpersonal & employer-employee relationships in an organization.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	To understand key functions in management as applied in practice.									
CO 2	To understand in more specific management related areas from planning till controlling.									
CO 3	To understand about the authority and responsibility, and different organizational structure									
CO 4	To understand about the role of leadership, motivation and communication in an organization.									
CO 5	To understand the importance of globalization and diversity in modern organizations.									

<u>UNIT- I</u>

Introduction to Human Resource Development: Meaning, significance and objectives of Human Resource Development, Human Resource Management and Human Resource development functions, Human Resource Development challenges.

<u>UNIT-II</u>

HRD Need Assessment & Designing of HRD programs: Strategic/ Organizational Analysis- Task Analysis- Person Analysis- prioritizing HRD needs, defining the objectives of HRD Intervention - Selecting the trainer - Selecting the Training methods - Preparing training material Scheduling an HRD program.

<u>UNIT-III</u>

Implementation & Evaluation of HRD programs: Training methods - Classroom training Approaches - Computer based Training, Purpose of HRD Evaluation- Kirkpatrick's evaluation frame work - Data collection for HRD Evaluation - Assessing the impact of HRD programs in Monetary Terms.

UNIT-IV

Career Management and Development: Introduction to Career management, meaning - Stages of life and Career Development - process of career Development - Issues in career development.

UNIT-V

HRD & Diversity: Introduction – Organizational culture – Labor Market changes and discrimination adapting to demographic changes

Text Books:

- 1. Jon M Werner, Randy L DeSimone : Human Resource development (Thomson/Cengage)
- 2. Raymond A Noe : Employee Trainee Development (Tata McGraw Hill)

- 1. John P. Wilson Human Resource Development (Kogan Page Business Books)
- 2. Tripathi P.C : Human Resource Development (Sultan Chand & Sons)
- 3. Uday Kumar Haldar : Human Resource Development (Oxford)

Course Title	DIG	ITAL	MAR	B.Tech VII Sem (R20) CSE				
	(Humanit	ies & Social Science Elective Course)						
Course Code	Category	H	lours/	Week	Credits	Maximum Marks		
2006702	HSMC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3	0	0	3	40	60	100
Mid Ex	xam Duration		End Exam Dur	ation · 3F	Irs			

Course Objectives:

- To provide foundation in the key concepts on digital marketing.
- Understand how and why to use digital marketing for multiple goals within a larger marketing and/or media strategy.
- Learn to develop, evaluate, and execute a comprehensive digital marketing strategy and plan.
- Understand the major digital marketing channels online advertising: Digital display, video, mobile, search engine, and social media
- Learn how to measure digital marketing efforts and calculate ROI

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Analyze the confluence of marketing, operations, and human resources in real-time delivery.
CO 2	Demonstrate cognitive knowledge of the skills required in conducting online research and research on online markets, as well as in identifying, assessing and selecting digital market opportunities.
CO 3	Explain emerging trends in digital marketing and critically assess the use of digital marketing tools by applying relevant marketing theories and frameworks.
CO 4	Investigate and evaluate issues in adapting to globalized markets that are constantly changing and increasingly networked.
CO 5	Interpret the traditional marketing mix within the context of a changing and extended range of digital strategies and tactics.

<u>UNIT - I</u>

Understanding Digital Marketing Concept, Components of Digital Marketing, Need and Scope of Digital Marketing, Benefits of Digital Marketing, Digital Marketing Platforms and Strategies, Comparison of Marketing and Digital Marketing, Digital Marketing Trends.

<u>UNIT - II</u>

Channels of Digital Marketing: Digital Marketing, Website Marketing, Search Engine Marketing, Online Advertising, Email Marketing, Blog Marketing, Social Media Marketing, Mobile Marketing, Migrating from Traditional Channels to Digital Channels. Marketing in the Digital Era Segmentation – Importance of Audience Segmentation, How Different Segments use Digital Media - Digital Media for Customer Loyalty.

<u>UNIT - III</u>

Digital Marketing Plan: Need of a Digital Marketing Plan, Elements of a Digital Marketing Plan – Marketing Plan, Executive Summary, Mission, Situational Analysis, Opportunities and Issues, Goals and Objectives, Marketing Strategy, Action Plan, Budget, Writing the Marketing Plan and Implementing the Plan.

<u>UNIT - IV</u>

Search Engine Marketing and Online Advertising: Importance of SEM, Understanding Web Search – Keywords, HTML Tags, Inbound Links, Online Advertising vs. Traditional Advertising, Payment Methods of Online Advertising – CPM (Cost-per-Thousand) and CPC (Cost-per-Click), Display Ads - Choosing a Display Ad Format, Landing Page and its Importance.

<u>UNIT - V</u>

Social Media Marketing: Understanding Social Media, Social Networking with Face book, LinkedIn, Blogging as a Social Medium, Social Sharing with YouTube. Measurement of Digital Media: Analyzing Digital Media Performance, Analyzing Website Performance, Analyzing Advertising Performance.

Text Books:

- 1. Seema Gupta, Tata McGraw Hill.
- 2. Dave Chaffey, Pearson Education
- 3. Dr Antorny Puthussery

- 1. Kevin Hartman, Digital Marketing Analytics,
- 2. Digital Marketing Self learning management series, Vibrant Publishers
- 3. Digital Marketing, Vandana Ahuja, Oxford publishing house
- 4. Fundamentals of Digital Marketing, Puneet Singh Batia Pearson Education
- 5. Digital Marketing by Seema Gupta (IIM-B)
- 6. Digital Marketing: Strategy, Implementation¬ & Practice by Dave Chaffey & Fiona Ellis Chad wick
- 7. Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation Damian Ryan and Calvin Jones.

Course Title	PROJ (Humanit	ECT N ies & { (MANA Social Course	GEME Science	NT Elective	B.Tech VII Sem (R20) CSE			
Course Code	Category	H	lours/	Week	Credits	Maximum Marks			
2006703	HSMC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
Mid Fy	yam Duration		End Evam Dur	ation · 3E	Irc				

Course Objectives:

- To impart the basic concepts of Project selection.
- To develop an understanding of Project Planning and design, construction and execution, monitoring and control, completion.
- To achieve the Project's main goal within the constraints.
- To optimize the allocated necessary inputs.
- To shape and reform the client's vision or tone got late with the masregards the project's objectives.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Remembering and recalling the principles of project management and methods involved in the process of project management.
CO 2	UnderstandingofProjectPlanning,design,construction,execution,maintaining and controlling
CO 3	Applying techniques in Project Evaluation, Scheduling And Controlling.
CO 4	Classifying and analysis risks in Project management and project scheduling

UNIT-I

Introduction to Project Management: Need for Project management, Taxonomy of project, Project life cycle, Project management Process, Principles of Project Management. Project Identification and Selection, Pre – feasibility study, Project Planning Process, Resources allocation, Project Break-even Point.

UNIT- II

Financial Evaluation of Projects: Cost of the Project, Means of finance, Financial Evaluation of projects – Payback period method, Accounting Rate of Return method, Net Present Value method, Internal Rate of Return method, Benefit Cost Ratio method (Profitability Index), (simple Problems).

UNIT-III

Project Risk & Quality Management: Introduction, Role of Risk management, Risk Identification – Steps in risk management –, Risk analysis (Sensitivity Analysis, Probability Analysis, Mean – Variance Analysis Decision trees, Simulation), Techniques for managing risk. Project Quality Management And ValueEngineering:Quality,Quality Concepts and Value Engineering.

UNIT-IV

Project Scheduling (Network Analysis): Development of Project network, Timeestimation, Determination of the critical Path, PERT Model, Project Crashing.(Simple Problems).

UNIT-V

Project Execution & PMS: Process Of Project Execution and Control, Project Management Information System (PMIS), Project Performance Measurement and Evaluation (PPME).
ProjectManagementSoftware: Essential Requirement of Project Management Software, Common Features available in most of the project management software.

Text Books:

- 1. Project management Best Practices: Achieving Global Excellence by Harold Kerzner; John Wiley & Sons; 3rd edition.
- 2. Project Management: Engineering, Technology and Implementation: united states Edition by Avraham Shtub and Jonathan F.Bard, Pearson; 1st edition.
- 3. The Essentials of Project Management by Dennis Lock; Routledge.
- 4. PrasannaChandra, Projects, TataMcGrawHill.
- 5. NagarajanK, ProjectManagement4thedition, NewAgeInternational(P)Ltd.
- 6. LSSrinath, PERT/CPM, AffiliatedEast-WestPress2005.

- 1. Project management by Stephen Hartley; Routledge, 4th Edition.
- 2. Project management: a systems Approach to Planning, Scheduling, and controlling by Harold Kerzner; Wiley; 12th edition.
- 3. Project Management & Appraisal by Sitangshu Khatua; published by Oxford University.
- 4. NicholasJ.M.&SteynH., ProjectManagement, Elsevier, Himalaya publications.
- 5. Narendra Singh, Project Management and Control, HPH, 2003.
- 6. Harvey Maylor, Project Management, Pearson Education.
- 7. Panneer selvam Senthil kumar, Project Management, PHI.

Course Title	BIG (S	DATA kill A	A TEC dvanc	HNOLC ed Cour	DGIES (se)	B.Tech VII	Sem (R20)) CSE	
Course Code	Category	Н	[ours/	Week	Credits	Maximum Marks			
2005710	SC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		0	0	4	2	40	60	100	
]	End Exam Dur	ration: 3H	Irs	

Course Objectives:

- Optimize business decisions and create competitive advantage with Big data analytics.
- Practice java concepts required for developing map reduce programs.
- Impart the architectural concepts of Hadoop and introducing map reduce paradigm.
- Practice programming tools PIG and HIVE in Hadoop ecosystem.
- Implement best practices for Hadoop development.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1 Understand the installation of VMW is and PIG.

CO 2 Understand and apply the setting up and Installing Hadoop in its three operating modes.

CO 3 Implement the file management tasks in Hadoop.

CO 4 Understand Map Reduce Paradigm.

CO 5 Understand Pig Latin scripts sort, group, join, project, and filter your data.

LIST OF EXPERIMENTS

1. A. To study of Big Data, Why is Big Data, Why Big Data is important?

B. To study of Big Data Analytics Meet Hadoop and Hadoop Architecture.

- 2. To study HDFS Commands.
- 3. Installation of VMW is to setup the Hadoop environment and its ecosystems.
- 4. A. Perform setting up and Installing Hadoop in its three operating modes.
 - I. Standalone.
 - II. Pseudo distributed.
 - III.Fully distributed.
 - B. Use web based tools to monitor your Hadoop setup.
- 5. Implementing the basic commands of LINUX Operating System File/Directory creation, deletion, and update operations.
- 6. Implement the following file management tasks in Hadoop:
 - I. Adding files and directories
 - II. Retrieving files
 - III. Deleting files

Hint: A typical Hadoop work flow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities.

- 7. Run a basic word count Map Reduce program to understand Map Reduce Paradigm.
- 8. Write a Map Reduce program that mines weather data.

Hint: Weather sensors collecting data every hour at many locations across the globe gather a large volume of log data, which is a good candidate for analysis with Map Reduce, since it is semi structured and record-oriented.

9. Implement matrix multiplication with Hadoop Map Reduce.

10.Installation of PIG.

- 11.Write Pig Latin scripts sort, group, join, project, and filter your data.
- 12.A. Run the Pig Latin Scripts to find Word Count.
 - B. Run the Pig Latin Scripts to find a max temp for each and every year.
- 13. HIVE OPERATIONS Use Hive to create, alter, and drop databases, tables, views, functions, and indexes.

Text Books:

- 1. Tom White, Hadoop, "The Definitive Guide", 3rd Edition, O'Reilly Publications, 2012.
- Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Undetstanding Big Data Analytics for Enterprise class Hadoop and StreamingData", 1st Edition, TMH, 2012.
- 3. Bart Baesens, Analytics in a Big Data World: The Essential Guide to DataScience and its Applications, Wiley Publications, 2014.
- 4. Big Data Technologies and Applications, Borko Furht, Flavio Villanustre, Springer.

- 1. Hand Book of Big Data Technologies, Albert Y. Zomaya, Sherif Sakr, Springer.
- Big Data Analytics: Tools and Technology for Effective Planning, Arun K. Somani, Ganesh Chandra Deka, CRC Press.
- Big Data, Big Analytics, Michael Minelli, Michele Chambers, Ambiga Dhiraj, John Wiley and Sons.

Course Title		INTERNSHIP B.Tech V					II Sem (R20) CSE		
Course Code	Category	Н	ours/V	Veek	Credits	Maximum Marks			
2005711	INT	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
					3	100		100	
Internal Assessment									

Course Objectives:

- Develop and improve business skills in communication, technology, quantitative reasoning, and teamwork.
- Observe and participate in business operations and decision-making.
- Meet professional role models and potential mentors who can provide guidance, feedback, and support.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Assess interests and abilities in their field of study and Integrate theory and practice.
CO 2	Develop communication, interpersonal and other critical skills in the job interview process.
CO 3	Acquire employment contacts leading directly to a full-time job following graduation from college.
CO 4	Identify and carry out performance objectives related to their job assignment.

S.No	Subject Code	Open Elective Course-III(OEC-III)	SC	L	Т	Р	IM	EM	CR
1	200E505	Operating System	OEC	3	0	0	40	60	3
2	200E506	R Programming	OEC	3	0	0	40	60	3

Open Elective Course-III (OEC-III)

Cour	rse Title	0 (0	OPERATING SYSTEMS (Open Elective Course -III)			B.Tech VII Sem (R20)				
Cour	se Code	Category	Hours/Week Credits			Maximum Marks				
200	DE505	OEC	L	Т	Р	С	C Continuous C Internal Assessment		Total	
			3	0	0	3	40	60	100	
	Mid ExamDuration:90 Minutes EndExamDuration:3Hrs									
Course Course CO1 CO2	 Course Objectives: Have an overview of functions of operating systems. Have a thorough knowledge of process management and memory management. To have a thorough knowledge of how handle to deadlocks. Learn the concepts of files, protection and security. Course Outcomes: On successful completion of this course, the students will be able to CO1 Understand the basic concepts related to the operating systems. CO2 Analyze the various process scheduling algorithms and process synchronization mechanisms 									
CO3	Analyze tł	ne various men	ory ma	inageme	ent sch	emes.				
CO4	Understan system.	d the ways to c	leal the	deadlo	cks and	d the basic of	concepts related	to files in	the	
CO5	Analyze tł	ne protection an	nd secu	rity mee	chanisi	ns				

<u>UNIT - I</u>

Operating Systems Basics: Operating systems functions, Overview of computer operating systems, distributed systems, operating system services and systems calls, system programs, operating system structure.

<u>UNIT - II</u>

Process Management: Process concepts, scheduling-criteria, algorithms, their evaluation.

Concurrency: Process synchronization, the critical-section problem, Peterson's Solution, semaphores, monitors.

<u>UNIT-III</u>

Memory Management: Swapping, contiguous memory allocation, paging, structure of the page table, segmentation, virtual memory, demand paging, page-replacement algorithms, Allocation of frames.

UNIT-IV

Deadlocks: system model, deadlock characterization, deadlock prevention, detection and avoidance, recovery form deadlock.

Files: The concept of a file, Access Methods, Directory structure, File system mounting.

UNIT-V

Protection: Protection, Goals of Protection, Domain of protection, Access Matrix,

Implementation of Access Matrix.

Security: Security problems, User authentication.

Text Books:

- 1. Abraham Silberchatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts", Eighth edition, John Wiley.
- 2. Andrew S Tanenbaum, "Modern Operating Systems", Fourth Edition, Pearson Education
- 3. William Stallings, "Operating Systems: Internals and Design Principles", Sixth Edition2009, Pearson Education.
- 4. D.M.Dhamdhere, "Operating Systems, A Concept based Approach", Third Edition, TMH

- 1. A.S.Godbole, "Operating Systems", Second Edition, TMH.
- 2. Operating Systems: A Spiral Approach Elmasri, Carrick, Levine, TMH Edition
- Operating Systems H.M. Deitel, P. J. Deitel, D. R. Choffnes, 3rd Edition, Pearson
- Operating Systems: A Practical Approach, Rajiv Chopra, 4th Edition, S Chand Publishers

Course Title		R PR	OGRA	AMMIN	G	B.Tech VII	Sem (R20	D) CSE	
	(0)	pen E	lective	Course	- 111)				
Course Code	Category	H	lours/	Week	Credits	Maximum Marks			
20OE506	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
						End Exam Du	ation: 3H	Irs	

Course Objectives:

- Optimize business decisions and create competitive advantage with Big data analytics.
- Practice java concepts required for developing map reduce programs.
- Impart the architectural concepts of Hadoop and introducing map reduce paradigm.
- Practice programming tools PIG and HIVE in Hadoop ecosystem.
- Implement best practices for Hadoop development.

Course Outcomes: On successful completion of this course, the students will be able to

- **CO 1** Understand the installation of VMW is and PIG.
- **CO 2** Understand and apply the setting up and Installing Hadoop in its three operating modes.
- **CO 3** Implement the file management tasks in Hadoop.
- **CO 4** Understand Map Reduce Paradigm.
- **CO 5** Understand Pig Latin scripts sort, group, join, project, and filter your data.

<u>UNIT-I</u>

Introduction to R:What is R? – Why R? – Advantages of R over Other Programming Languages - R Studio: R command Prompt, R script file, comments – Handling Packages in R: Installing a R Package, Few commands to get started: installed.packages(), packageDescription(), help(), find.package(), library() - Input and Output – Entering Data from keyboard – Printing fewer digits or more digits – Special Values functions : NA, Inf and–inf.

<u>UNIT-II</u>

R Data Types: Vectors, Lists, Matrices, Arrays, Factors, Data Frame – **R - Variables**: Variable assignment, Data types of Variable, Finding Variable Is(), Deleting Variables - **R Operators**: Arithmetic Operators, Relational Operators, Logical Operator, Assignment Operators, Miscellaneous Operators - **R Decision Making**: if statement, if – else statement, if– else if statement, switch statement – **R Loops**: repeat loop, while loop, for loop - Loop control statement: break statement, next statement.

<u>UNIT-III</u>

R-Function : function definition, Built in functions: mean(), paste(), sum(), min(), max(), seq(), user-defined function, calling a function, calling a function without an argument, calling a function with argument values - **R-Strings** – Manipulating Text in Data: substr(), strsplit(), paste(), grep(), toupper(), tolower() - **R Vectors** – Sequence vector, rep function, vector access, vector names, vector math, vector recycling, vector element sorting - **R List** - Creating a List, List Tags and Values, Add/Delete Element to or from a List, Size of List, Merging Lists, Converting List to Vector - **R Matrices** – Accessing Elements of a Matrix, Matrix Computations: Addition, subtraction, Multiplication and Division- **R Arrays:** Naming Columns and Rows, Accessing Array Elements, Manipulating Array Elements, Calculation Across Array Elements - **R Factors** – creating factors, generating factor levels gl().

UNIT-IV

Data Frames –Create Data Frame, Data Frame Access, Understanding Data in Data Frames: dim(), nrow(), ncol(), str(), Summary(), names(), head(), tail(), edit() functions - Extract Data from Data Frame, **Expand Data Frame**: Add Column, Add Row - Joining columns and rows in a Data frame rbind() and cbind() – Merging Data frames merge() – Melting and Casting data melt(), cast().

Loading and handling Data in R: Getting and Setting the Working Directory – getwd(), setwd(), dir() - R-CSV Files - Input as a CSV file, Reading a CSV File, Analyzing the CSV File: summary(), min(), max(), range(), mean(), median(), apply() - Writing into a CSV File – R -Excel File – Reading the Excel file.

UNIT-V

Descriptive Statistics: Data Range, Frequencies, Mode, Mean and Median: Mean Applying Trim Option, Applying NA Option, Median - Mode - **Standard Deviation – Correlation - Spotting Problems in Data with Visualization:** visually Checking Distributions for a single Variable - \mathbf{R} – **Pie Charts**: Pie Chart title and Colors – Slice Percentages and Chart Legend, 3D Pie Chart – \mathbf{R} Histograms – Density Plot - \mathbf{R} – **Bar Charts**: Bar Chart Labels, Title and Colors.

Text Books:

- 1. ROBERT I. KABACOFF "R in Action Data analysis and graphics with R" Manning Publications Co 2011
- 2. Seema Acharya, Data Analytics using R, McGrawHill Education (India), 2018, ISBN:978-93-5260-524-8.
- 3. Tutorials Point (I) simply easy learning, Online Tutorial Library (2018), *RProgramming*, Retrieved from https://www.tutorialspoint.com/r/r_tutorial.pdf.
- 4. Andrie de Vries, Joris Meys, R for Dummies A Wiley Brand, 2nd Edition, John Wileyand Sons, Inc, 2015, ISBN: 978-1-119-05580-8

S.No	Subject Code	Open Elective Course-IV(OEC-IV)	SC	L	Т	Р	IM	EM	CR
1	200E507	Python Programming	OEC	3	0	0	40	60	3
2	200E508	Cloud Computing	OEC	3	0	0	40	60	3

Open Elective Course-IV (OEC-IV)

Course T	itle	PYTH (Ope	ON PR n Electi	OGRAN ve Coui	B. Tech VII Sem (R20) CSE					
Course C	ode C	ategory	Ηοι	ırs/Wee	ek	Credits	Maximum Marks			
200E5	07	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
1	Mid Exam Duration: 90 MinsEnd Exam Duration: 3Hrs									
Course Ob	jectives:									
• Under	• Understand programming skills using basics of Python language									
• Acquir	re basics o	of how to us	se collec	tion data	a types	of python	language.			
• To Int	roduce the	object-ori	ented pro	ogramm	ing con	cepts.				
• To und	lerstand P	ython Libr	aries Nu	mPy and	d Panda	ıs.				
• To des	ign a clie	nt server m	odel usir	ng netwo	ork Pro	gramming	in python.			
Course Ou	Course Outcomes: On successful completion of this course, the students will be able to									
CO1 D	emonstrat	e and acqu	ire know	ledge of	n usage	of Data ty	pes, operators,	input and	output	
st	statements in python programming.									
CO 2 Id	Identify the right sequences of python language in problem solving.									
CO 3 A	Apply object-oriented features to solve real time applications									
CO 2 A	Analyze the given problem and develop python program to solve the problem									
CO 4 A	ble to use	Numerical	Python	(NumPy	/) Libra	aryd for da	ta processing.			
CO 5 A	Apply network programming features of python for Internet applications									

<u>UNIT-I</u>

Introduction: Data Types, Object References, Collection Data Types, Logical Operations, Control Flow Statements, Arithmetic Operators, Input/Output, Creating and CallingFunctions.

<u>UNIT-II</u>

Collection Data Types: Sequence Types, Set Types, Mapping Types, Iterating and Copying Collections, Control Structures, Exception Handling, Custom Functions, Modules and packages.

UNIT-III

File Handling and OOP: Writing and Parsing Text Files, Object Oriented Approach, Concepts and Terminology, Attributes and Methods, Inheritance and Polymorphism, Using properties to control attribute access, creating complete fully integrated data types.

UNIT-IV

NumPy Basics: The NumPy ndarray, Creating ndarray, Data Types for ndarray, Operations between Arrays and Scalars, Basic Indexing and Slicing, Boolean Indexing, Universal Functions, Data Processing using Arrays.

<u>UNIT-V</u>

Introduction to Internet Programming: What is Client/Server Architecture? Sockets: Communication End points, Network Programming in Python: Socket() Module Function, Socket Object Built-In Methods, creating a TCP Server, creating a TCP Client. [Text Book 4]

Text Books:

- 1. Programming in Python 3, A complete Introduction to Python Language by Mark Summerfield, Pearson Publications, second edition, 2018
- 2. Core python programming by Wesley J Chun, Prentice Hall, Second edition.
- 3. Python for Data Analysis by Wes McKinney, O'Reilly, First Edition.
- 4. Core Python Applications Programming by Wesley J. Chun, Third Edition.

- 1. Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher.
- 2. Learning python, Mark Lutz, O'Reilly publications, 5th edition, 2013
- 3. Python: The complete reference by Martin C Brown, McGraw-Hill Publication, 2018.
- 4. Core python programming by Dr. R. Nageswara Rao, Dreamtech press, second edition, 2018.

Course	Title	CLOUD COMPUTING (Open Elective Course -IV)				B.Tech VII Sem (R20) CSE				
Course	Code	Category	Ног	ırs/Wee	k	Credits	Maximum Marks			
20OE508		OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
	Mid Exam Duration: 90 Minutes End Exam Duration: 3Hrs								5	
 Course Objectives: To explain the history of different computing paradigms. To Know about issues and virtualization in cloud To introduce the various levels of Cloud Services and applications that can be achieved by the cloud. To know about cloud access and security issues. 										
CO 1	Recall different Computing Paradigms and overview of cloud computing.									
CO 2	Understanding the Cloud Computing Architecture, network connectivity and cloud migration strategy.									
CO 3	Explain	Explain and characterize different cloud deployment models, service models.								
CO 4	Understanding virtualization, Programming models and Software Development in Cloud Computing.									

UNIT-I

Computing Paradigms, Cloud Computing Fundamentals, Motivation for Cloud Computing: The Need for Cloud Computing. Defining Cloud Computing: NIST Definition of Cloud Computing, Computing Is a Service, Cloud Computing Is a Platform. Principles of Cloud computing: Five Essential Characteristics, Four Cloud Deployment Models, Three Service Offering Models, Cloud Ecosystem, Requirements for Cloud Services, Cloud Application, Benefits and Drawbacks.

UNIT-II

Cloud Computing Architecture and Management: Cloud Architecture, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications on the Cloud, Managing the Cloud, Migrating Application to Cloud.

UNIT-III

Cloud Deployment Models: Private Cloud, Public Cloud, Community Cloud, Hybrid Cloud..

Cloud Service Models: Infrastructure as a Service, Platform as a Service, Software as a Service, Other Cloud Service Models.

UNIT-IV

Virtualization: Introduction, Virtualization opportunities, Approaches to Virtualization, Hypervisors, From Virtualization to cloud computing.

Programming Models in Cloud: Cloud Application Development Platforms: Windows Azure, Google App Engine, Force.com, Manjrasoft Aneka.

Software Development in Cloud: Introduction, Different perspectives on SaaS development, New challenges, Cloud aware software development using PaaS technology.

UNIT-V

Cloud Services : Using Amazon Web Services – Understanding AWS, AWS Components and Services, Working with the Elastic Compute Cloud (EC2), Amazon Storage Systems, Amazon Database Services, Using Microsoft Cloud Services – Exploring Microsoft Cloud Services, Defining the Windows Azure Platform.

Text Books:

- 1. Barrie Sosinsky, "Cloud Computing Bile", Wiley publishing.
- Judith Hurwitz, R Bloor, M.Kanfman, F.Halper "Cloud Computing for Dummies", Wiley India Edition, First Edition.
- 3. Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, "Cloud Computing: Principles and Paradigms", Wiley Publication, 2011.
- 4. K.Chandrasekaran, Essentials of Cloud Computing, CRC Press, 2015.

- 1. Danielle Ruest and Nelson Ruest, "Virtualization: A Beginners's Guide", McGraw Hill, 2009.
- 2. Tom White, "Hadoop: The Definitive Guide", O'RIELLY Media 2009.
- 3. Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012.

B.Tech VIII SEM CSE (R20)

Course Title]	MAJO	R PRC	B.Tech VIII	Sem (R2	(0) CSE			
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks			
2005801	PROJ	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsT		Total	
		0	0	3	12	40	60	100	
Internal Assessment:40 External Assessment:60							ment:60		
 Develop ar engineerin Acquire an 	 Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions. Acquire and apply new knowledge as needed, using appropriate learning strategies. Course Outcomes: On successful completion of this course, the students will be able to								
CO1 Demo	Demonstrate a sound technical knowledge of their selected project topic.								
CO 2 Under	Understand problem identification, formulation and solution								
CO 3 Design	Design engineering solutions to complex problems utilizing a systems approach.								
CO 4 Comm	unicate with en	gineers	and the	comm	unity at large	e in written an o	ral form		
CO 5 Demo	Demonstrate the knowledge, skills and attitudes of a professional engineer								

GUIDELINES FOR PROJECT

The prime objective of the project work is to imbibe students with technical, analytical and innovative ideas. The students will able to learn theoretical and practical approaches pertaining to software applications development. A team of 4-5 students formed as a group and work under the supervision of a departmental faculty. Associating the students to solve real world problems identified within the department. The project work normally includes:

- 1. Literature survey on existing problem/ topic from viable sources.
- 2. Eliciting the problem-solving approach/methodologies and making the feasibility study.
- 3. The team should perform an extensive software requirements analysis.
- 4. Preparing an abstract on the selected topic and present before Departmental Review Committee(DRC).
- Preparing a roadmap to design, analyze, implement, evaluate/test considering functional, non-functional aspects and finally, deploy the application/product/software service.
- 6. Detailed Analysis/Design /Simulation as needed.
- 7. Final development of product/process conducting testing and specifying the results, conclusions and future scope.

- 8. Preparing a project report in the standard format for being evaluated by the Department ReviewCommittee (DRC).
- 9. Final Project presentation / execution before Departmental Review Committee (DRC)

Course Title		INTI (6 1	ERNS Month	HIP is)		B.Tech VII	[Sem (R2	:0) CSE	
Course Code	Category	Category Hours/Week				Maximum Marks			
2005801	INT	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
					12	40	60	100	
Internal Assessment: 40					E	xternal Assessi	ment: 60		

Course Objectives:

- Develop and improve business skills in communication, technology, quantitative reasoning, and teamwork.
- Observe and participate in business operations and decision-making.
- Meet professional role models and potential mentors who can provide guidance, feedback, and support.

Course (Dutcomes: On successful completion of this course, the students will be able to
CO 1	Assess interests and abilities in their field of study and Integrate theory and practice.
CO 2	Develop communication, interpersonal and other critical skills in the job interview process.
CO 3	Acquire employment contacts leading directly to a full-time job following graduation from college.
CO 4	Identify and carry out performance objectives related to their job assignment.